
Source Code Audit of Backstage
for the Backstage Team

Final Report and Management Summary

2024-12-16
PUBLIC

X41 D-Sec GmbH
Krefelder Str. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit of Backstage Backstage Team

Revision Date Change Author(s)

1 2024-09-13 Final Report and Management
Summary

A. Basma, E. Sesterhenn, JM, M.
Vervier, Y. El Baaj

2 2024-12-16 Public Report M. Vervier

X41 D-Sec GmbH PUBLIC Page 1 of 40

Source Code Audit of Backstage Backstage Team

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Methodology . 6
2.2 Findings Overview . 7
2.3 Scope . 8
2.4 Coverage . 9
2.5 Recommended Further Tests . 11

3 Rating Methodology 13
3.1 CVSS . 13
3.2 Severity Mapping . 16
3.3 Common Weakness Enumeration . 16

4 Results 17
4.1 Findings . 17
4.2 Informational Notes . 27

5 About X41 D-Sec GmbH 39

X41 D-Sec GmbH PUBLIC Page 2 of 40

Source Code Audit of Backstage Backstage Team

Dashboard

Target
Customer Backstage Team
Name Backstage
Type Framework
Version v1.30.0
Engagement
Type White Box Penetration Test
Consultants 5: Ali Basma, Eric Sesterhenn, JM, Markus Vervier, and Yassine

El Baaj
Engagement Effort 24 person-days, 2024-08-19 to 2024-09-12
Total issues found 4

0 1 2 3 4 5 6 7

None - 7

Low - 0

Medium - 1

High - 3

Critical - 0

CWE-287 (1)

CWE-1321 (1)CWE-693 (1)

CWE-23 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

0

1

2

3

4

5

6

0 1 2 3 4

Exploitability

I
m
p
a
c
t

Figure 2: CVSS Impact and Exploitability Distribution

X41 D-Sec GmbH PUBLIC Page 3 of 40

mailto:ali.basma@x41-dsec.de
mailto:eric.sesterhenn@x41-dsec.de
mailto:markus.vervier@x41-dsec.de
mailto:yassine.el-baaj@x41-dsec.de
mailto:yassine.el-baaj@x41-dsec.de

Source Code Audit of Backstage Backstage Team

1 Executive Summary

In August and September 2024, X41D-SecGmbHperformed a security source code audit against
Backstage to identify vulnerabilities and weaknesses in the framework, following a previous re-
view in 2023. Thework is sponsored by theOpen Source Technology Improvement Fund (OSTIF)
as part of their ongoing efforts to secure the open source world.
A total of four vulnerabilities were discovered during the test by X41. None were rated as having
a critical severity, three as high, one as medium, and none as low. Additionally, seven issues
without a direct security impact were identified.

Medium - 1

High - 3

Figure 1.1: Issues and Severity
Backstage is an open-source framework and software catalog that allows developers to quickly
ship high-quality code. It is written in TypeScript and extensible via plugins in many ways. As
a framework to develop complex applications, vulnerabilities in the platform itself and its core
plugins could have a wider scale technical impact on many other systems.

X41 D-Sec GmbH PUBLIC Page 4 of 40

Source Code Audit of Backstage Backstage Team

Therefore, X41 was tasked to perform a code audit on the core parts of Backstage. In a source
code audit, all information about the system is made available and the code is systematically
inspected for security vulnerabilities that are exploitable or even vulnerabilities that are currently
shadowed, but have potential to lead to security issues in the future. The test was performed by
five experienced security experts between 2024-08-19 and 2024-09-12.
The most severe issue discovered allows an attacker to take over arbitrary accounts in Backstage
if multiple authentication providers are enabled. Also a high severity issue allows attackers to
perform a Denial of Service attack or, depending on the circumstances, potentially achieve SQL
injection or arbitrary code execution. Another issue allows attackers to fetch files outside of the
configured TechDocs web root directory from a cloud provider, leading to potential unintended
exposure of data. Furthermore, a bypass of the Cross-site Scripting filter was also identified via
unfiltered content types.
X41 recommends to implement mitigations against prototype pollution. Possibly dangerous con-
figurations should be marked as such in the documentation, and the Cross-site Scripting filter
should be applied based on the output, not on the prediction of an input.
Overall, the Backstage framework appears to be on a good security level compared to source
code of similar size and complexity. It is visible that it was designed with security in mind. Never-
theless, due to the complexity and high pace of the development, the potential for vulnerabilities
being introduced is always present. It is recommended to perform code audits regularly to detect
issues early.

X41 D-Sec GmbH PUBLIC Page 5 of 40

Source Code Audit of Backstage Backstage Team

2 Introduction

X41 reviewed Backstage, its setup documentation, and a number of its plugins. The software
is used to build developer portals to create an overview of the different software running in an
organization, integrating with external systems for features like Continuous Integration.
Compromising a Backstage instance would allow an attacker to gain sensitive information about
an organization’s digital assets, such as the source code or deployment configurations of software
components.

2.1 Methodology

X41 reviewed Backstage as defined in the scope below. The reviewwasmainly based on a source
code review alongside analyses of local installations of the software on test systems.
A manual approach for penetration tests and for code reviews is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools1.
X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding2 standards and the Study - A Penetration Testing Model3
of the German Federal Office for Information Security.
In an initial, informal workshop regarding the design and architecture of the application a basic
threat model is created. This is used to explore the source code for interesting attack surface and
code paths. These are then audited manually and with the help of tools such as static analyzers
and fuzzers. The identified issues are documented and can be used in a GAP analysis to highlight
changes to previous audits.

1 https://portswigger.net/burp2 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards3 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH PUBLIC Page 6 of 40

https://portswigger.net/burp
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Source Code Audit of Backstage Backstage Team

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF
Possible Account Hijacking Via OAuth When Using Built-inBackstage Resolvers HIGH BS-CR-24-01 4.1.1
Server-Side Prototype Pollution via Filters Request Parameter HIGH BS-CR-24-02 4.1.2
Circumvention of XSS Protection MEDIUM BS-CR-24-03 4.1.3
Directory Traversal in TechDocs HIGH BS-CR-24-04 4.1.4
Assessing CSRF Risks in GraphQL Content Type Handling NONE BS-CR-24-100 4.2.1
Path Disclosure NONE BS-CR-24-101 4.2.2
Vulnerable Node.js Modules NONE BS-CR-24-102 4.2.3
Express Responses without Explicit Content-Type NONE BS-CR-24-103 4.2.4
Local File Path Resolution NONE BS-CR-24-104 4.2.5
Lowercasing Emails in AWS Auth NONE BS-CR-24-105 4.2.6
Dependency Conflicts during Backstage TechDocs Plugin In-stallation NONE BS-CR-24-106 4.2.7

Table 2.1: Security-Relevant Findings

X41 D-Sec GmbH PUBLIC Page 7 of 40

Source Code Audit of Backstage Backstage Team

2.3 Scope

The scope of this audit covered the backstage source code version v1.30.0 as identified by com-
mit 821f065ee9dc781de74c1cfa7ce38b751f1e35b2 4 from 2024-08-20.
The target of the scope included everything from X41’s previous audit of Backstage5:

• Backstage core
• plugins/auth-backend
• plugins/search-backend
• plugins/catalog-backend
• plugins/scaffolder-backend
• TechDocs, consisting of:

– plugins/techdocs
– plugins/techdocs-backend
– packages/techdocs-common

In addition to the previous scope, the items listed below were in scope:
• Permissions plugin6
• Service to Service Auth7
• New backend system8
• Public entrypoint9

A particular focus was put on the Proxy backend, the authentication service, and other services
exported from the backend-defaults package10.
Explicitly out of scope were the items listed below:

• In-depth analysis of the new frontend system, which is in alpha state
• Rate limiting
• Configuration Manager
• Plugin runner backend
• Secrets management

4 https://github.com/backstage/backstage/tree/821f065ee9dc781de74c1cfa7ce38b751f1e35b25 https://x41-dsec.de/static/reports/X41-Backstage-Audit-2022-Final-Report-PUBLIC.pdf6 https://backstage.io/docs/permissions/overview#how-does-it-work7 https://backstage.io/docs/auth/service-to-service-auth8 https://backstage.io/docs/backend-system/9 https://backstage.io/docs/tutorials/enable-public-entry10 https://github.com/backstage/backstage/tree/821f065/packages/backend-defaults/src/entrypoints

X41 D-Sec GmbH PUBLIC Page 8 of 40

https://github.com/backstage/backstage/tree/821f065ee9dc781de74c1cfa7ce38b751f1e35b2
https://x41-dsec.de/static/reports/X41-Backstage-Audit-2022-Final-Report-PUBLIC.pdf
https://backstage.io/docs/permissions/overview#how-does-it-work
https://backstage.io/docs/auth/service-to-service-auth
https://backstage.io/docs/backend-system/
https://backstage.io/docs/tutorials/enable-public-entry
https://github.com/backstage/backstage/tree/821f065/packages/backend-defaults/src/entrypoints

Source Code Audit of Backstage Backstage Team

A Discord chat group was created for direct communication between the testers and the devel-
opers, which were available throughout the test and were able to answer any questions on short
notice.

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
The time allocated to X41 for this assessment was sufficient to yield a reasonable coverage of
the given scope.
X41 set up a local installation of Backstage, using the development version available in the npm11
repository https://www.npmjs.com/package/@backstage/create-app based on the commit in
scope as mentioned above.
As a general approach for establishing the use of best practices, the different components and
plugins were tested for OWASP12 Top Ten vulnerabilities13 and in addition looked for security
best practices not covered by OWASP. The source code was audited manually and inspected
with the help of semgrep14 and SonarQube15. The project was also searched for violations of its
own secure coding practices. Possible discrepancies in URL16 parsing behavior and related issues
such as path and directory traversal were checked.
The following vulnerability classes were investigated in the code that was in-scope:

• Authentication Bypass (OAUTH Misconfiguration, OpenID Misconfiguration)
• Authorization Bypass (Direct-Object-Reference (DOR), Logical Issues)
• Insufficient Secrets Validation (JWT)
• Cryptographic Issues (Signature Bypass, flawed Transport Encryption)
• Information Exposure
• Privilege Escalation
• Prototype Pollution (Server-Side and Client-Side)
• Server-side Injections: stored XSS, SQLi, Command Injection, Template Injection
• Client-side Injections: DOM XSS, mXSS, Template Injection, JavaScript Injection

11 Node Package Manager12Open Web Application Security Project13 https://owasp.org/www-project-top-ten/14 https://semgrep.dev/15 https://www.sonarsource.com/products/sonarqube/16 Uniform Resource Locator

X41 D-Sec GmbH PUBLIC Page 9 of 40

https://www.npmjs.com/package/@backstage/create-app
https://owasp.org/www-project-top-ten/
https://semgrep.dev/
https://www.sonarsource.com/products/sonarqube/

Source Code Audit of Backstage Backstage Team

• SSRF17
• DoS18
• Insecure File Operations (Directory Traversal, Arbitrary File Read/Write, Race-conditions)
• Concurrency Issues (Race-conditions)

The review featured the following items that were investigated during the review:
• Cookies were checked for Secure and HttpOnly attributes.
• The JWT19 token validation was checked for potential bypasses or other flaws affecting

their validation on the server-side.
• Reliance on Client-Side Authorization and Authentication was investigated.
• The service-to-service authentication was reviewed by inspecting the code and methods

used.
• The AWS20 authentication was investigated for flaws and misconfigurations.
• expressjs responses using send() were investigated.
• Parsing issues for different formats (JSON, HTTP).
• WebSocket hijacking was investigated using dynamic and static analysis.
• The codewas checked for usage of url.parse, newURL(), req.url, req.path, req.baseUrl, req.originalUrl,

and URL parsing discrepancies
• The server setup was checked for possible mistakes in TLS21 configuration and the code
was checked for improper trust of client-controlled values, such as req attributes.

• The handling of HTTP22 headers was inspected for the possible handling of untrustworthy
input.

• TechDocs import handling was audited on how it sanitizes and handles external data.
• The code and build definitions were inspected for outdated or vulnerable third-party li-

braries and package using npm audit and OWASP dependency check.
• Potential Prototype Pollution on the server side was tested statically by inspecting the code

manually andwith static analysis tools. Injection pointswere also tested dynamically against
pollutions involving __proto__ and constructor.

• Prototype Pollution was tested dynamically on the client side using DOM Invader.
• The code was audited for log-file injections.
• TheOAuth authentication using third-party authentication providers, theOpenID layer, the

authorization layer as well as the verification of JWT tokens were also audited.
• All plugins/search-backend-* pluginswere tested by first fuzzing the parameters to iden-

tify vulnerabilities or error messages that can lead to injection vulnerabilities, and secondly
17 Server-Side Request Forgery18 Denial of Service19 JSONWeb Token20 Amazon Web Services21 Transport Layer Security22 HyperText Transfer Protocol

X41 D-Sec GmbH PUBLIC Page 10 of 40

Source Code Audit of Backstage Backstage Team

by auditing the code.
• DOM23 Invader was used to to check for DOM-based XSS24 and other client-side security

issues.
• The GraphQL API25 was also assessed for potential security flaws, including injections and

other common vulnerabilities. In particular it was inspected for information exposure.
• All user-controllable inputs were thoroughly tested for potential SSTI26 vulnerabilities.
• The code was also vetted for potential SSRF attacks, especially in the different URL readers.
• The Backstage Scaffolder plugin was reviewed for different vulnerability classes such as
XSS, Template Injection, SQLi, DoS, SSRF.

• File operations were investigated for local file inclusions and directory traversals.
• SQLi via parameters such as filters was investigated.
• The database abstraction layers were investigated for injection attacks.
• The Kubernetes related code was inspected for common flaws.
• Investigated click-jacking via Burp Active Scan.
• Docker files were investigated using the docker vulnerability checker and manual inspec-

tion.
• HTTP desync and request smuggling techniques were investigated using Burp.
• Header manipulation and logical issues regarding request headers were investigated using

Burp and curl.

2.5 Recommended Further Tests

X41 recommends to perform a retest of the solutions implemented to mitigate the vulnerabilities
identified during this review.
To cover more attack surface, a source code auditing of the plugins that were not in scope is also
recommended. Additionally, X41 recommends to perform a penetration test of a fully configured
instance of Backstage with a more clearly defined threat model as some vulnerabilities might only
occur in certain scenarios and configurations.
23 Document Object Model24 Cross-site Scripting25 Application Programming Interface26 Server-Side Template Injection

X41 D-Sec GmbH PUBLIC Page 11 of 40

Source Code Audit of Backstage Backstage Team

Regarding the bug class of Prototype Pollution (CWE 1321), it is recommended to further inves-
tigate Backstage for vulnerable code patterns such as the following:

1 myval = object[key] // attacker controls value of `key`
2 ...
3 myval[key2] = anotherval // attacker controls `key2` and `anotherval`

Listing 2.1: r

More information can be found at the OWASP Prototype Pollution Cheat Sheet27.

27 https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html

X41 D-Sec GmbH PUBLIC Page 12 of 40

https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html

Source Code Audit of Backstage Backstage Team

3 Rating Methodology

Security vulnerabilities are given a purely technical rating by the testers when they are discovered
during a test. Business factors and financial risks for Backstage Team are beyond the scope of a
penetration test, which focuses entirely on technical factors. However, technical results from a
penetration test may be an integral part of a general risk assessment. A penetration test is based
on a limited time frame and only covers vulnerabilities and security issues which have been found
in the given time, there is no claim for full coverage.
The CVSS1 is used to score all findings relevant to security. The resulting CVSS score is mapped
to qualitative ratings as shown below.

3.1 CVSS

All findings relevant to security are rated by the testers using the CVSS industry standard version
3.1, revision 1.
Vulnerabilities scored with CVSS get a numeric value based on several metrics ranging from 0.0
(least worst) to 10.0 (worst).
The score captures different factors that express the impact and the ease of exploitation of a
vulnerability among other factors. For a detailed description of how the scores are calculated,
please see the CVSS version 3.1 specification.2
The metrics used to calculate the final score are grouped into three different categories.

1 Common Vulnerability Scoring System2 https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf

X41 D-Sec GmbH PUBLIC Page 13 of 40

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf

Source Code Audit of Backstage Backstage Team

The Base Metric Group represents the intrinsic and fundamental characteristics of a vulnerability
that are constant over time and user environments. It captures the following metrics:

• Attack Vector (AV)
• Attack Complexity (AC)
• Privileges Required (PR)
• User Interaction (UI)
• Scope (S)
• Confidentiality Impact (C)
• Integrity Impact (I)
• Availability Impact (A)

The Temporal Metric Group represents the characteristics of a vulnerability that change over time
but not among user environments. The following metrics are covered by it:

• Exploitability (E)
• Remediation Level (RL)
• Report Confidence (RC)

The Environmental Metric Group represents the characteristics of a vulnerability that are relevant
and unique to a particular user’s environment. It includes the following metrics:

• Attack Vector (MAV)
• Attack Complexity (MAC)
• Privileges Required (MPR)
• User Interaction (MUI)
• Confidentiality Requirement (MCR)
• Integrity Requirement (MIR)
• Availability Requirement (MAR)
• Scope (MS)
• Confidentiality Impact (MC)
• Integrity Impact (MI)
• Availability Impact (MA)

A CVSS vector defines a specific set of metrics and their values, and it can be used to reproduce
and assess a given score. It is rendered as a string that exactly reproduces a score.

X41 D-Sec GmbH PUBLIC Page 14 of 40

Source Code Audit of Backstage Backstage Team

For example, the vector CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:H/I:L/A:N defines a base score
metric with the following parameters:

• Attack Vector: Network
• Attack Complexity: High
• Privileges Required: Low
• User Interaction: Required
• Scope: Changed
• Confidentiality Impact: High
• Integrity Impact: Low
• Availability Impact: None

In this example, a network-based attacker performs a complex attack after gaining access to
some privileges, by tricking a user into performing some actions. This allows the attacker to read
confidential data and change some parts of that data.
The detailed scores are the following:

Metric Score
CVSS Base Score 6.5
Impact Sub-Score 4.7
Exploitability Sub-Score 1.3
CVSS Temporal Score Not Available
CVSS Environmental Score Not Available
Modified Impact Sub-Score Not Available
Overall CVSS Score 6.5

CVSS vectors can be automatically parsed to recreate the score, for example, with the CVSS
calculator provided by FIRST, the organization behind CVSS: https://www.first.org/cvss/c
alculator/3.1#CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:H/I:L/A:N.

X41 D-Sec GmbH PUBLIC Page 15 of 40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:H/I:L/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:C/C:H/I:L/A:N

Source Code Audit of Backstage Backstage Team

3.2 Severity Mapping

To help in understanding the results of a test, numeric CVSS scores are mapped to qualitative
ratings as follows:

Severity Rating CVSS Score
NONE 0.0
LOW 0.1–3.9

MEDIUM 4.0–6.9
HIGH 7.0–8.9

CRITICAL 9.0–10.0

3.3 CommonWeakness Enumeration

The CWE3 is a set of software weaknesses that allows vulnerabilities and weaknesses in software
to be categorized. If applicable, X41 gives a CWE ID for each vulnerability that is discovered
during a test.
CWE is a very powerful method for categorizing a vulnerability. It gives general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE.4 More information
can be found on the CWE site at https://cwe.mitre.org/.

3 Common Weakness Enumeration4 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 16 of 40

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit of Backstage Backstage Team

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 BS-CR-24-01: Possible Account Hijacking Via OAuthWhen Using Built-
in Backstage Resolvers

Severity: HIGH
CVSS v3.1 Total Score: 7.7
CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L
CWE: 287 – Improper Authentication
Affected Component: Authentication

4.1.1.1 Description

X41 identified that the use of the built-in resolvers emailLocalPartMatchingUserEntityName
and usernameMatchingUserEntityName can lead to account hijacking. If the victim does not
already have an account on the target authentication provider, the use of one of these resolvers
could allow an attacker to perform one of the following attacks:

• If the external authentication provider is configured to use the emailLocalPartMatching-
X41 D-Sec GmbH PUBLIC Page 17 of 40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L
https://cwe.mitre.org/data/definitions/287.html

Source Code Audit of Backstage Backstage Team

UserEntityName, the attacker can create an account with a specially crafted email address
that matches the username of the victim and hijack their account.

• If the external authentication provider is configured to use the usernameMatchingUser-

EntityName, the attacker can create an account with the same username as of the victims
and hijack their account.

Backstage can be configured to have any number of OAuth external authentication providers
such as GitHub or Google1. Once a user enters the correct credentials for the external authen-
tication provider, Backstage will check if that user can be mapped to a Backstage user identity,
which typically lives in the Backstage Catalog. The condition that decides whether a user au-
thenticated through an external authentication provider indeed exists in the Backstage Catalog
is determined by a Backstage Resolver.
In addition to that, the official documentation mentions that the use of the usernameMatching-

UserEntityName is specific to GitHub2. However, the reviewed version of Backstage allows
using it with other authentication providers such as GitLab. This matches the documentation at
https://backstage.io/docs/auth/gitlab/provider#configuration.
This means that a victim that is not registered on GitLab, using GitHub as an authentication
provider and registered there with the username johndoe can see their account hijacked by an at-
tacker if the latter creates a new GitLab account with the username johndoe or an email address
with a local part matching that same username, namely johndoe@attacker-controlled.com.

4.1.1.2 Solution Advice

X41 recommends to set a priority order between the different resolvers in the documentation
and recommend the use of the emailMatchingUserEntityProfileEmail resolver, which per-
forms the user resolution using the full email address. This means that an attacker cannot take
over an account using the methods described above, unless they manage to obtain access to the
victim’s email address. Additionally, X41 recommends to explicitly label those resolvers as being
dangerous as they are subject to attacker’s abuse.

1 https://backstage.io/docs/getting-started/config/authentication2 https://backstage.io/docs/auth/identity-resolver/#using-builtin-resolvers

X41 D-Sec GmbH PUBLIC Page 18 of 40

https://backstage.io/docs/auth/gitlab/provider#configuration
https://backstage.io/docs/getting-started/config/authentication
https://backstage.io/docs/auth/identity-resolver/#using-builtin-resolvers

Source Code Audit of Backstage Backstage Team

4.1.2 BS-CR-24-02: Server-Side Prototype Pollution via Filters Request Pa-
rameter

Severity: HIGH
CVSS v3.1 Total Score: 7.5
CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CWE: 1321 – Improperly Controlled Modification of Object Prototype At-

tributes (’Prototype Pollution’)
Affected Component: packages/core-components/src/components/Table/Table.tsx:ex-

tractValueByField()

4.1.2.1 Description

X41 discovered that the server-side code responsible for parsing and processing the filter pa-
rameter is subject to a prototype pollution vulnerability3.
By polluting the prototype of an object, attackers are able to cause unintended behavior in the
server-side NodeJS code, leading to a denial-of-service condition or even the injection and ex-
ecution of unintended database queries. Depending on the context and conditions, prototype
pollution can even lead to arbitrary code execution.
The filter parameter contains a value key called __proto__, as seen in the request in listing 4.1.

1 GET /api/catalog/entities/by-query?limit=0&filter=foo=guest,__proto__=`"' HTTP/1.1
2 Host: localhost:7007
3 authorization: Bearer eyJ0eXAiOiJ2bmQuYmFja3N0YW...
4 Content-Type: application/json
5 Accept: */*
6 Origin: http://localhost:3000
7 Sec-Fetch-Site: same-site
8 Sec-Fetch-Mode: cors
9 Sec-Fetch-Dest: empty

10 Referer: http://localhost:3000/
11 Connection: keep-alive

Listing 4.1: Polluting HTTP Request with Filter Parameter

This will result in an HTTP error 500 being returned by the server and cause errors for all subse-
quent calls to Database.prepare() as shown in listing 4.2.

3 https://portswigger.net/research/server-side-prototype-pollution#what-is-prototype-pollution

X41 D-Sec GmbH PUBLIC Page 19 of 40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
https://cwe.mitre.org/data/definitions/1321.html
https://cwe.mitre.org/data/definitions/1321.html
https://portswigger.net/research/server-side-prototype-pollution#what-is-prototype-pollution

Source Code Audit of Backstage Backstage Team

1 [1] 2024-08-28T19:55:16.506Z rootHttpRouter error Request failed with status 500 select * from
`user_info` where `user_entity_ref` = 'user:development/guest' and `values` = '`"''' limit 1
- no such column: values type=errorHandler code=SQLITE_ERROR stack=SqliteError: select * from
`user_info` where `user_entity_ref` = 'user:development/guest' and `values` = '`"''' limit 1
- no such column: values

↪→

↪→

↪→

↪→

2 [1] at Database.prepare
(/data/backstage/node_modules/better-sqlite3/lib/methods/wrappers.js:5:21)↪→

3 [SNIP]
4 [1] at UserInfoDatabaseHandler.getUserInfo (/data/backstage/node_modules/@backstage/plugin-au ⌋

th-backend/src/identity/UserInfoDatabaseHandler.ts:51:18)↪→

5 [1] at <anonymous>
(/data/backstage/node_modules/@backstage/plugin-auth-backend/src/identity/router.ts:102:22)↪→

6 [1] 2024-08-28T19:55:17.630Z catalog warn Failed to load processing items update `refresh_state`
set `next_update_at` = datetime('now', '138.6517332388715 seconds'), `values` = '`"''' where
1 = 0 - no such column: values code=SQLITE_ERROR stack=SqliteError: update `refresh_state`
set `next_update_at` = datetime('now', '138.6517332388715 seconds'), `values` = '`"''' where
1 = 0 - no such column: values

↪→

↪→

↪→

↪→

7 [1] at Database.prepare
(/data/backstage/node_modules/better-sqlite3/lib/methods/wrappers.js:5:21)↪→

8 [SNIP]
9 [1] at DefaultProcessingDatabase.getProcessableEntities (/data/backstage/node_modules/@backst ⌋

age/plugin-catalog-backend/src/database/DefaultProcessingDatabase.ts:234:11)↪→

10 [1] at options.database.transaction.doNotRejectOnRollback (/data/backstage/node_modules/@back ⌋
stage/plugin-catalog-backend/src/database/DefaultProcessingDatabase.ts:289:20)↪→

Listing 4.2: Database Error Due to Polluted Object Prototype

As seen in the log, the value `"' became part of a query to the SQL4 database in escaped form,
but caused an error due to the query being incorrectly formed. The reason for this lies in the
previous request and (seemingly) unrelated code found in file packages/core-components/src/com-
ponents/Table/Table.tsx and shown in listing 4.3.

4 Structured Query Language

X41 D-Sec GmbH PUBLIC Page 20 of 40

Source Code Audit of Backstage Backstage Team

1 function extractValueByField(data: any, field: string): any | undefined {
2 const path = field.split('.');
3 let value = data[path[0]];
4

5 for (let i = 1; i < path.length; ++i) {
6 if (value === undefined) {
7 return value;
8 }
9

10 const f = path[i]; // MARK1 const f is extract from the untrustworthy path input and assumed
to be '__proto__'↪→

11 value = value[f]; // MARK2 value[f] is setting value to it`s own prototype property like if
it was value['__proto__']↪→

12 }
13

14 return value; // prototype of 'value' is returned instead of the object 'value'
15 }

Listing 4.3: Code Polluting the Database Value Object’s Prototype

Since the function returns the prototype of the object, modifications of its properties will trans-
late to all other objects that are later derived from its prototype. This seems to be the case and the
reason that the value for key __proto__ in the filters is appearing again in subsequent database
requests, breaking the functionality of backstage until the process is restarted. Setting a key to
the value constructor also causes a pollution situation because a function type is overwritten
by a string type.
During the test, no way was identified to achieve direct code execution since the prototype
was overwritten by a string type value and not by another object or array value. This prevents
classical exploitation or access to prototype pollution gadgets5. Also the SQL query could not
be subverted maliciously since the polluted value was still correctly escaped by the prepared
statement handling code. However, it cannot be ruled out that with more time available, an
accessible gadget could be found, or that a database operation that does not escape the value
properly could be triggered.

4.1.2.2 Solution Advice

It is strongly recommended to not use untrustworthy external input directly as key values on
objects and arrays in the TypeScript and in JavaScript code. If they are used as keys, it is strongly

5 https://github.com/BlackFan/client-side-prototype-pollution

X41 D-Sec GmbH PUBLIC Page 21 of 40

https://github.com/BlackFan/client-side-prototype-pollution

Source Code Audit of Backstage Backstage Team

recommended to explore different methods to prevent a pollution of the prototype, for example
setting hardening flags on NodeJS that prevent the use of the __proto__ key, or by freezing of
object prototypes that will prevent them from being modified. More information can be found
in the OWASP Prototype Pollution Cheat Sheet6.

6 https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html

X41 D-Sec GmbH PUBLIC Page 22 of 40

https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html

Source Code Audit of Backstage Backstage Team

4.1.3 BS-CR-24-03: Circumvention of XSS Protection

Severity: MEDIUM
CVSS v3.1 Total Score: 6.5
CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:L
CWE: 693 – Protection Mechanism Failure
Affected Component: plugins/techdocs-node/src/stages/publish/helpers.ts:getContent-

TypeForExtension()

4.1.3.1 Description

The function getHeadersForFileExtension() is used to set the Content-Type of files served via
TechDocs. It calls the helper function getContentTypeForExtension() to resolve the MIME7 type
based on the file extension. To prevent XSS, a filter is applied to not serve HTML8, XML9 and
SVG10 files, as shown in listing 4.4. This filter is applied by various TechDocs file storage providers
such as awsS3 and GoogleStorage, since the storage might be controlled by external parties.

1 const getContentTypeForExtension = (ext: string): string => {
2 const defaultContentType = 'text/plain; charset=utf-8';
3

4 // Prevent sanitization bypass by preventing browsers from directly rendering
5 // the contents of untrusted files.
6 if (ext.match(/htm|xml|svg/i)) {
7 return defaultContentType;
8 }
9

10 return mime.contentType(ext) || defaultContentType;
11 };

Listing 4.4: MIME-Type Filtering

Several differentMIME types exist that allow the execution of JavaScript11. By cross-referencing
these with the mime-db12 used by Backstage, the following unfiltered file extensions could be
identified:

7Multipurpose Internet Mail Extensions8 HyperText Markup Language9 Extensible Markup Language10 Scalable Vector Graphics11 https://github.com/BlackFan/content-type-research/blob/master/XSS.md12 https://github.com/jshttp/mime-db/blob/master/db.json

X41 D-Sec GmbH PUBLIC Page 23 of 40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:L
https://cwe.mitre.org/data/definitions/693.html
https://github.com/BlackFan/content-type-research/blob/master/XSS.md
https://github.com/jshttp/mime-db/blob/master/db.json

Source Code Audit of Backstage Backstage Team

• .appcache (text/cache-manifest)
• .manifest (text/cache-manifest)
• .mathml (application/mathml+xml)
• .owl (application/octet-stream)
• .rdf (application/rdf+xml)
• .rng (application/xml)
• .vtt (text/vtt)
• .xht (application/xhtml+xml)
• .xsd (application/xml)
• .xsl (application/xml)

Depending on the browser and final CSP13 set, these can allow the execution of JavaScript in the
victim’s browser.
One example that executes JavaScript is shown in listings 4.5 and 4.6.

1 <a:script xmlns:a="http://www.w3.org/1999/xhtml" src="hi.js" type="application/javascript"/>

Listing 4.5: XHT File Loading JavaScript

1 alert(1337);

Listing 4.6: JavaScript File hi.js

4.1.3.2 Solution Advice

X41 recommends to not only exclude file extensions before theMIME lookup, but filteringMIME
types after the lookup as well. Another option to mitigate this issue is to adopt an allowlist-based
filter that only allows known-safe content to be rendered.
Additionally, it should be investigated whether the serving of TechDocs can be further restricted
by using a less permissive CSP header, or only rendering the file contents in a sandboxed iframe14.

13 Content Security Policy14 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#sandbox

X41 D-Sec GmbH PUBLIC Page 24 of 40

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#sandbox

Source Code Audit of Backstage Backstage Team

4.1.4 BS-CR-24-04: Directory Traversal in TechDocs

Severity: HIGH
CVSS v3.1 Total Score: 7.7
CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N
CWE: 23 – Relative Path Traversal
Affected Component: plugins/techdocs-node/src/stages/publish/awsS3.ts

4.1.4.1 Description

When using the awsS3 storage provider for TechDocs with a bucketRootPath, it is possible to
access files outside the configured bucketRootPath.
The function docsRouter() effectively passes the user-controlled req.path to path.posix.join(),
which joins the paths and then normalizes them15, as shown in listing 4.7.

1 docsRouter(): express.Handler {
2 return async (req, res) => {
3 const decodedUri = decodeURI(req.path.replace(/^\//, ''));
4

5 // filePath example - /default/component/documented-component/index.html
6 const filePathNoRoot = this.legacyPathCasing
7 ? decodedUri
8 : lowerCaseEntityTripletInStoragePath(decodedUri);
9

10 // Prepend the root path to the relative file path
11 const filePath = path.posix.join(this.bucketRootPath, filePathNoRoot);
12 // [SNIP]
13 const resp = await this.storageClient.send(
14 new GetObjectCommand({ Bucket: this.bucketName, Key: filePath }),
15);
16 // [SNIP]
17 res.send(await streamToBuffer(resp.Body as Readable));
18 } // [SNIP]
19 };

Listing 4.7: Request Handling of S3 Provider

By sending a specially crafted HTTP path, it is possible to perform directory traversal and access
objects outside the bucketRootPath.
15 https://nodejs.org/api/path.html#pathjoinpaths

X41 D-Sec GmbH PUBLIC Page 25 of 40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N
https://cwe.mitre.org/data/definitions/23.html
https://nodejs.org/api/path.html#pathjoinpaths

Source Code Audit of Backstage Backstage Team

Although bucketRootPath was configured to point to the /static/ directory, X41 managed to
access files in the /secret/ directory using the command shown in listing 4.8.

1 curl -H "Cookie: $BACKSTAGE_AUTH" --path-as-is 'http://localhost:7007/api/techdocs/static/docs/de ⌋
fault/component/backstage/index.html/../../../../../secret/secret.txt'↪→

Listing 4.8: Path Traversal Payload on awsS3 Using curl Command

This returned the contents of the /secret/secret.txt file within the bucket.
GoogleStorage handles requests in a very similarway and is likely also affected. OpenStackSwift
and AzureBlobStorage do not support a bucketRootPath. The Local TechDocs provider uses
express.static() and X41 believes that it is not affected.

4.1.4.2 Solution Advice

X41 recommends to make use of resolveSafeChildPath(), as documented in the project’s
SECURITY.md16.

16 https://github.com/backstage/backstage/blob/821f065/SECURITY.md#local-file-path-resolution

X41 D-Sec GmbH PUBLIC Page 26 of 40

https://github.com/backstage/backstage/blob/821f065/SECURITY.md#local-file-path-resolution

Source Code Audit of Backstage Backstage Team

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

4.2.1 BS-CR-24-100: Assessing CSRF Risks in GraphQL Content Type Han-
dling

Affected Component: https://demo. backstage.io/api/graphql

4.2.1.1 Description

X41 identified that while the GraphQL API primarily accepts application/json as a content
type, which is generally considered secure against CSRF17 attacks due to the same-origin policy
enforced by modern browsers, it also supports the application/x-www-form-urlencoded con-
tent type. A GraphQL endpoint accepting form content types is often a first step to achieve CSRF
attacks18.
When an API allows users to update their email address, a mutation request might look like the
request shown in listing 4.9.

1 POST /update-profile HTTP/1.1
2 Host: api.example.com
3 Content-Type: application/json
4

5 {
6 "email": "newemail@example.com"
7 }

Listing 4.9: Request with application/json Content Type

If this request is sent cross-origin with the application/json content type, the browser will first
send an HTTP OPTIONS preflight request. The server must respond with the appropriate CORS19
17 Cross-Site Request Forgery18 https://medusa0xf.medium.com/how-to-perform-csrf-attack-in-graphql-api-fda9594dbd4219 Cross-Origin Resource Sharing

X41 D-Sec GmbH PUBLIC Page 27 of 40

https://medusa0xf.medium.com/ how-to-perform-csrf-attack-in-graphql-api-fda9594dbd42

Source Code Audit of Backstage Backstage Team

headers to permit the actual request. If that same request uses the application/x-www-form-

urlencoded content type.
1 POST /update-profile HTTP/1.1
2 Host: api.example.com
3 Content-Type: application/x-www-form-urlencoded
4

5 email=newemail%40example.com

Listing 4.10: Request with application/x-www-form-urlencoded Content Type

The browser would send it directly without a preflight, as this is a "simple" request. Stricter
checks for application/json help prevent attacks like CSRF, wheremalicious sitesmight exploit
authenticated users to perform unintended actions on other sites.
When changing the content type to application/x-www-form-urlencoded, X41 was unable to
fully exploit this vulnerability because there were no exposed mutations in the GraphQL schema.
The presence of a mutation in the future could enable an attacker to exploit this vulnerability to
execute unauthorized actions on behalf of authenticated users.

4.2.1.2 Solution Advice

X41 recommends enforcing strict content type validation by configuring the GraphQL API to
only accept application/json requests. This restriction will prevent the API from accepting
potentially exploitable content types like application/x-www-form-urlencoded.

X41 D-Sec GmbH PUBLIC Page 28 of 40

Source Code Audit of Backstage Backstage Team

4.2.2 BS-CR-24-101: Path Disclosure

Affected Component: Multiple

4.2.2.1 Description

When errors such as authentication failures are thrown in the code, the exception is presented
to the users. This leaks the full path of the backstage installation, which can help attackers with
further attacks. A request with an invalid, but correctly formatted JWT (see listing 4.11) will result
in the error shown in listing 4.12.

1 GET /api/catalog/.well-known/backstage/permissions/apply-conditions HTTP/1.1
2 Host: localhost:7007
3 authorization: Bearer eyJ0i....

Listing 4.11: Request with Bad JWT

1 {
2 "error" : {
3 "cause" : {
4 "code" : "ERR_JWKS_NO_MATCHING_KEY",
5 "message" : "no applicable key found in the JSON Web Key Set",
6 "name" : "JWKSNoMatchingKey",
7 "stack" : "JWKSNoMatchingKey: no applicable key found in the JSON Web Key Set\n
8 at LocalJWKSet.getKey (/app/node_modules/jose/dist/node/cjs/jwks/local.js:84:19)\n
9 at RemoteJWKSet.localJWKSet [as _local]

(/app/node_modules/jose/dist/node/cjs/jwks/local.js:115:63)\n↪→

10 at RemoteJWKSet.getKey (/app/node_modules/jose/dist/node/cjs/jwks/remote.js:79:31)\n
11 at remoteJWKSet (/app/node_modules/jose/dist/node/cjs/jwks/remote.js:119:64)\n
12 at flattenedVerify (/app/node_modules/jose/dist/node/cjs/jws/flattened/verify.js:75:21)\n
13 at compactVerify (/app/node_modules/jose/dist/node/cjs/jws/compact/verify.js:18:60)\n
14 at Object.jwtVerify (/app/node_modules/jose/dist/node/cjs/jwt/verify.js:8:58)\n
15 at UserTokenHandler.verifyToken

(/app/node_modules/@backstage/backend-defaults/dist/auth.cjs.js:892:36)\n↪→

16 at process.processTicksAndRejections (node:internal/process/task_queues:95:5)\n
17 at async DefaultAuthService.authenticate

(/app/node_modules/@backstage/backend-defaults/dist/auth.cjs.js:44:24)\n↪→

18 at async #extractCredentialsFromRequest
(/app/node_modules/@backstage/backend-defaults/dist/httpAuth.cjs.js:50:12)\n↪→

19 at async DefaultHttpAuthService.credentials
(/app/node_modules/@backstage/backend-defaults/dist/httpAuth.cjs.js:74:96)"↪→

20 },

X41 D-Sec GmbH PUBLIC Page 29 of 40

Source Code Audit of Backstage Backstage Team

21 "message" : "Invalid token; caused by JWKSNoMatchingKey: no applicable key found in the
JSON Web Key Set",↪→

22 "name" : "AuthenticationError"
23 },
24 "request" : {
25 "method" : "GET",
26 "url" : "/api/catalog/.well-known/backstage/permissions/apply-conditions"
27 },
28 "response" : {
29 "statusCode" : 401
30 }
31 }

Listing 4.12: Response Leaking Path

4.2.2.2 Solution Advice

X41 suggests to hide the full stack traces from users, log them to a file and show a generic error
message instead.

X41 D-Sec GmbH PUBLIC Page 30 of 40

Source Code Audit of Backstage Backstage Team

4.2.3 BS-CR-24-102: Vulnerable Node.js Modules

Affected Component: npm Dependencies

4.2.3.1 Description

Using the yarn npm audit –all, X41 identified that the following packages were vulnerable to
publicly disclosed vulnerabilities:

• The ws package version 8.14.2 is vulnerable to DoS when handling a request with many
HTTP headers. Additionally, a publicly available exploit can be found in the security advi-
sory under: https://github.com/advisories/GHSA-3h5v-q93c-6h6q.

• The Webpack package version 5.91.0 is vulnerable to DOM clobbering that leads to XSS.
A publicly available exploit can be found in the security advisory under: https://github
.com/advisories/GHSA-4vvj-4cpr-p986.

X41 noticed that the ws package was upgraded for the main application, as visible under the
GitHub Pull Request 2569920. However, this was not applied for the signals-node plugin.
Since no concrete way to exploit both vulnerabilities was found, this is reported as an informa-
tional note.

4.2.3.2 Solution Advice

X41 recommends to upgrade the vulnerable packages to the patched versions mentioned in their
respective security advisories. Additionally, X41 recommends to add the path to each manifest
file to Dependabot21 for a protection spanning all the application’s components.

20 https://github.com/backstage/backstage/pull/2569921 https://github.com/dependabot

X41 D-Sec GmbH PUBLIC Page 31 of 40

https://github.com/advisories/GHSA-3h5v-q93c-6h6q
https://github.com/advisories/GHSA-4vvj-4cpr-p986
https://github.com/advisories/GHSA-4vvj-4cpr-p986
https://github.com/backstage/backstage/pull/25699
https://github.com/dependabot

Source Code Audit of Backstage Backstage Team

4.2.4 BS-CR-24-103: Express Responses without Explicit Content-Type

Affected Component: Source Code

4.2.4.1 Description

The Backstage project’s SECURITY.md mandates22 that the Express responses’ .send(...) function
should not be used, unless a non-JSON23 content type is sent.
X41 found several violations, such as the one shown in listing 4.1324.

1 router.get('/status', async (req: Request<any, NotificationStatus>, res) => {
2 const user = await getUser(req);
3 const status = await store.getStatus({ user });
4 res.send(status);
5 });

Listing 4.13: Use of res.send()

The violations found in plugins/notifications-backend/src/service/router.ts are listed
below.

• Line 240-24325
• Line 26226
• Line 26527
• Line 304 28

X41 used a manual approach to identify the above list of violations, which may not be exhaustive.
22 https://github.com/backstage/backstage/blob/821f065/SECURITY.md#express-responses23 JavaScript Object Notation24 https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service

/router.ts#L24925 https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service
/router.ts#L240-L24326 https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service
/router.ts#L26227 https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service
/router.ts#L26528 https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service
/router.ts#L304

X41 D-Sec GmbH PUBLIC Page 32 of 40

https://github.com/backstage/backstage/blob/821f065/SECURITY.md#express-responses
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L249
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L249
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L240-L243
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L240-L243
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L262
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L262
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L265
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L265
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L304
https://github.com/backstage/backstage/blob/821f065/plugins/notifications-backend/src/service/router.ts#L304

Source Code Audit of Backstage Backstage Team

4.2.4.2 Solution Advice

X41 recommends to implement an automation (e.g. using semgrep29) that detects and rejects
source code violating the project’s coding practices.

29 https://github.com/semgrep/semgrep

X41 D-Sec GmbH PUBLIC Page 33 of 40

https://github.com/semgrep/semgrep

Source Code Audit of Backstage Backstage Team

4.2.5 BS-CR-24-104: Local File Path Resolution

Affected Component: /docs/features/software-templates/writing-custom-actions.md

4.2.5.1 Description

The Backstage project’s SECURITY.mdmandates30 the use of resolveSafeChildPath()when access-
ing local file paths to protect against directory traversals.
X41 found at least one violation31 of this rule in example source code templates, as shown in
listing 4.14.

1 async handler(ctx) {
2 const { signal } = ctx;
3 await writeFile(
4 `${ctx.workspacePath}/${ctx.input.filename}`,
5 ctx.input.contents,
6 { signal },
7 _ => {},
8);
9 },

Listing 4.14: Path Joined in an Unsafe Manner

4.2.5.2 Solution Advice

X41 recommends to implement an automation (e.g. using semgrep32) that detects and rejects
source code violating the project’s coding practices.

30 https://github.com/backstage/backstage/blob/821f065/SECURITY.md#local-file-path-resolution31 https://github.com/backstage/backstage/blob/821f065/docs/features/software-templates/writing-c
ustom-actions.md?plain=1#L12132 https://github.com/semgrep/semgrep

X41 D-Sec GmbH PUBLIC Page 34 of 40

https://github.com/backstage/backstage/blob/821f065/SECURITY.md#local-file-path-resolution
https://github.com/backstage/backstage/blob/821f065/docs/features/software-templates/writing-custom-actions.md?plain=1#L121
https://github.com/backstage/backstage/blob/821f065/docs/features/software-templates/writing-custom-actions.md?plain=1#L121
https://github.com/semgrep/semgrep

Source Code Audit of Backstage Backstage Team

4.2.6 BS-CR-24-105: Lowercasing Emails in AWS Auth

Affected Component: plugins/auth-backend-module-aws-alb-provider/src/authenticator.ts

4.2.6.1 Description

X41 identified a potential issue related to how email addresses are handled in the AWS authenti-
cation code. The application transforms all email addresses to lowercase for username creation,
as shown in listing 4.15. This could lead to a vulnerability if the email server is case sensitive.

1 const fullProfile: PassportProfile = {
2 provider: 'unknown',
3 id: claims.sub,
4 displayName: claims.name,
5 username: claims.email.split('@')[0].toLowerCase(),
6 name: {
7 familyName: claims.family_name,
8 givenName: claims.given_name,
9 },

10 emails: [{ value: claims.email.toLowerCase() }],
11 photos: [{ value: claims.picture }],
12 };

Listing 4.15: AWS Authentication Code

While most major email providers (such as Gmail, Outlook, and Yahoo) treat email addresses as
case insensitive, the RFC33 5321 standard allows for case sensitivity in the local part of email
addresses. If an organization uses a custom email server configured to be case sensitive, this
could lead to security issues.
If two users register with the same email but with different cases (e.g., User@example.com and
user@example.com), they would be considered the same user due to the lowercasing. This could
lead to user account overlap, unauthorized access, and other security risks, especially in environ-
ments using case-sensitive email systems.

4.2.6.2 Solution Advice

X41 recommends to consider how email addresses are handled in AWS authentication and to
automatically lowercase the local part of email addresses should be avoided when generating
33 Request for Comments

X41 D-Sec GmbH PUBLIC Page 35 of 40

Source Code Audit of Backstage Backstage Team

usernames, as this could cause conflicts if the email server treats email addresses as case sensitive.
Instead, ensure that email addresses are stored and compared exactly as provided by the user, or
enforce consistent case-insensitivity throughout the system.

X41 D-Sec GmbH PUBLIC Page 36 of 40

Source Code Audit of Backstage Backstage Team

4.2.7 BS-CR-24-106: Dependency Conflicts during Backstage TechDocs Plu-
gin Installation

Affected Component: @backstage/plugin-techdocs

4.2.7.1 Description

During the installation of the Backstage TechDocs plugin, a significant dependency conflict was
identified between the frontend and backend components. Specifically, the installation process
caused one component’s files to overwrite or remove critical files from the other component,
leading to a broken setup.
Installing the frontend plugin backstage/plugin-techdocs using the command-line shown in
listing 4.16 adds the necessary files, including the plugin-techdocs-backend directory within
node_modules/backstage/. However, this installation also removes the plugin-techdocs fron-
tend plugin from the node_modules/backstage/. This will provoke an error message, as shown
in figure 4.1.

1 yarn --cwd packages/app add @backstage/plugin-techdocs

Listing 4.16: TechDocs Frontend Installation

Figure 4.1: TechDocs Frontend Error Message
Installing the backend plugin should ideally work alongside the frontend. However, when the in-
stallation command shown in listing 4.17 is executed, the plugin-techdocs-backend directory is
removed from node_modules/backstage/, leaving the backend incomplete and potentially caus-
ing errors. Additionally, the plugin-techdocs frontend plugin is re-added. This will provoke
the error message shown in figure 4.2 leading to a scenario where you can never have both the
frontend and backend plugins installed simultaneously.

X41 D-Sec GmbH PUBLIC Page 37 of 40

Source Code Audit of Backstage Backstage Team

1 yarn --cwd packages/backend add @backstage/plugin-techdocs-backend

Listing 4.17: TechDocs Frontend Installation

Figure 4.2: TechDocs Backend Error Message

4.2.7.2 Solution Advice

To avoid issues with conflicting plugin installations in Backstage TechDocs, it is recommended
to review and streamline the installation process for the frontend and backend plugins. Ensuring
that both plugins can coexistwithout removing each other’s necessary fileswould preventmanual
intervention.

X41 D-Sec GmbH PUBLIC Page 38 of 40

Source Code Audit of Backstage Backstage Team

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Source code audit of ISC BIND9 DNS server1• Source code audit of the Git source code version control system2
• Review of the Mozilla Firefox updater3• X41 Browser Security White Paper4• Review of Cryptographic Protocols (Wire)5• Identification of flaws in Fax Machines6,7• Smartcard Stack Fuzzing8

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/2 https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/3 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/4 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf5 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf6 https://www.x41-dsec.de/lab/blog/fax/7 https://2018.zeronights.ru/en/reports/zero-fax-given/8 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 39 of 40

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit of Backstage Backstage Team

Acronyms

API Application Programming Interface . 11
AWS Amazon Web Services . 10
CORS Cross-Origin Resource Sharing . 27
CSP Content Security Policy . 24
CSRF Cross-Site Request Forgery . 27
CVSS Common Vulnerability Scoring System . 13
CWE Common Weakness Enumeration . 16
DOM Document Object Model . 11
DoS Denial of Service . 10
HTML HyperText Markup Language . 23
HTTP HyperText Transfer Protocol . 10
JSON JavaScript Object Notation . 32
JWT JSONWeb Token . 10
MIME Multipurpose Internet Mail Extensions . 23
npm Node Package Manager . 9
OWASP Open Web Application Security Project . 9
RFC Request for Comments . 35
SQL Structured Query Language . 20
SSRF Server-Side Request Forgery . 10
SSTI Server-Side Template Injection . 11
SVG Scalable Vector Graphics . 23
TLS Transport Layer Security . 10
URL Uniform Resource Locator . 9
XML Extensible Markup Language . 23
XSS Cross-site Scripting . 11

X41 D-Sec GmbH PUBLIC Page 40 of 40

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology
	CVSS
	Severity Mapping
	Common Weakness Enumeration

	Results
	Findings
	BS-CR-24-01
	BS-CR-24-02
	BS-CR-24-03
	BS-CR-24-04

	Informational Notes
	BS-CR-24-100
	BS-CR-24-101
	BS-CR-24-102
	BS-CR-24-103
	BS-CR-24-104
	BS-CR-24-105
	BS-CR-24-106

	About X41 D-Sec GmbH

